Multispectral and Thermal Sensors Onboard UAVs for Heterogeneity in Merlot Vineyard Detection: Contribution to Zoning Maps

This work evaluated the ability of UAVs to detect field heterogeneity and their influences on vineyard development in Yepes (Spain). Under deficit irrigation, vine growth and yield variability are influenced by soil characteristics such as water holding capacity (WHC). Over two irrigation seasons (2021–2022), several vegetation indices (VIs) and parameters of vegetative growth and yield were evaluated in two field zones. Multispectral and thermal information was obtained from bare soils. The water availability showed annual differences; it was reduced by 49% in 2022 compared to 2021, suggesting that no significant differences were found for the parameters studied. The zone with higher WHC also had the higher vegetative growth and yield in 2021. This agreed with the significant differences among the VIs evaluated, especially the ratio vegetation index (RVI). Soil multispectral and thermal bands showed significant differences between zones in both years. This indicated that the soil spectral and thermal characteristics could provide more reliable information for zoning than vine vegetation itself, as they were less influenced by climatic conditions between years. Consequently, UAVs proved to be valuable for assessing spatial and temporal heterogeneity in the monitoring of vineyards. Soil spectral and thermal information will be essential for zoning applications due to its consistency across different years, enhancing vineyard management practices.

​This work evaluated the ability of UAVs to detect field heterogeneity and their influences on vineyard development in Yepes (Spain). Under deficit irrigation, vine growth and yield variability are influenced by soil characteristics such as water holding capacity (WHC). Over two irrigation seasons (2021–2022), several vegetation indices (VIs) and parameters of vegetative growth and yield were evaluated in two field zones. Multispectral and thermal information was obtained from bare soils. The water availability showed annual differences; it was reduced by 49% in 2022 compared to 2021, suggesting that no significant differences were found for the parameters studied. The zone with higher WHC also had the higher vegetative growth and yield in 2021. This agreed with the significant differences among the VIs evaluated, especially the ratio vegetation index (RVI). Soil multispectral and thermal bands showed significant differences between zones in both years. This indicated that the soil spectral and thermal characteristics could provide more reliable information for zoning than vine vegetation itself, as they were less influenced by climatic conditions between years. Consequently, UAVs proved to be valuable for assessing spatial and temporal heterogeneity in the monitoring of vineyards. Soil spectral and thermal information will be essential for zoning applications due to its consistency across different years, enhancing vineyard management practices. Read More