Influence of Maxwell Stiffness in Damage Control and Analysis of Structures with Added Viscous Dampers

Viscous damping systems are often implemented in structures to reduce seismic damage. The stiffness of these elements is dominated by the most flexible part of the set including brace extender, auxiliary mounting elements and damping unit. Existing experimental data are used in this study to show that the actual stiffness of the set is about 25% to 50% of the value generally adopted in current engineering practice, which is based solely on the brace extender. A numerical study shows that this reduction has large implications for several variables related to damage control: residual drift ratio, storey acceleration and plastic strain energy dissipated by the frame members. Other variables, such as member forces and rotations, can experience large variations, particularly for non-linear dampers and high damping levels, especially in the top part of the building and more conspicuously for moderate earthquake intensities. In the absence of accurate data, Maxwell stiffness for analysis based on brace extender properties should be substantially reduced, with recommended factors between 0.25 and 0.50. Given the scarcity of experimental data, these results should be considered preliminary.

​Viscous damping systems are often implemented in structures to reduce seismic damage. The stiffness of these elements is dominated by the most flexible part of the set including brace extender, auxiliary mounting elements and damping unit. Existing experimental data are used in this study to show that the actual stiffness of the set is about 25% to 50% of the value generally adopted in current engineering practice, which is based solely on the brace extender. A numerical study shows that this reduction has large implications for several variables related to damage control: residual drift ratio, storey acceleration and plastic strain energy dissipated by the frame members. Other variables, such as member forces and rotations, can experience large variations, particularly for non-linear dampers and high damping levels, especially in the top part of the building and more conspicuously for moderate earthquake intensities. In the absence of accurate data, Maxwell stiffness for analysis based on brace extender properties should be substantially reduced, with recommended factors between 0.25 and 0.50. Given the scarcity of experimental data, these results should be considered preliminary. Read More