The paper presents a model to include the internal resistance of the grounding electrodes in the calculation of its electrical features. The semi-analytical expressions for the calculation of the grounding resistance arising from the model are used to study the feasibility of the driven-rod method for the estimation of the soil resistivity profile since, unlike other methods, the internal resistance of the conductors can be of great influence for a correct estimate. From the grounding resistance profile an inverse problem based on the minimization of the quadratic differences between the resistance measured and that calculated from the model is posed. Several synthetic examples are used to assess the limitations of the method in conditions close to real situations. Finally, some real cases involving data measured in the field are analyzed. Whether in synthetic examples or in real soils it is found that the spatial frequency of the driven-rod resistance sampling is a determinant factor in order to study the feasibility of the driven–rod method.

The paper presents a model to include the internal resistance of the grounding electrodes in the calculation of its electrical features. The semi-analytical expressions for the calculation of the grounding resistance arising from the model are used to study the feasibility of the driven-rod method for the estimation of the soil resistivity profile since, unlike other methods, the internal resistance of the conductors can be of great influence for a correct estimate. From the grounding resistance profile an inverse problem based on the minimization of the quadratic differences between the resistance measured and that calculated from the model is posed. Several synthetic examples are used to assess the limitations of the method in conditions close to real situations. Finally, some real cases involving data measured in the field are analyzed. Whether in synthetic examples or in real soils it is found that the spatial frequency of the driven-rod resistance sampling is a determinant factor in order to study the feasibility of the driven–rod method. Read More