Ecological strategies for resource utilisation are important features of pathogens, yet have been overshadowed by stronger interest in genetic mechanisms underlying disease emergence. The purpose of this study is to ask whether host range and transmission traits translate into ecological strategies for host-species utilisation in a heterogeneous ecosystem, and whether host utilisation corresponds to genetic differentiation among three bromoviruses. We combine high-throughput sequencing and population genomics with analyses of species co-occurrence to unravel the ecological strategies of the viruses across four habitat types. The results show that the bromoviruses that were more closely related genetically did not share similar ecological strategies, but that the more distantly related pair did. Shared strategies included a broad host range and more frequent co-occurrences, which both were habitat-dependent. Each habitat thus presents as a barrier to gene flow, and each virus has an ecological strategy to navigate limitations to colonising non-natal habitats. Variation in ecological strategies could therefore hold the key to unlocking events that lead to emergence.
Ecological strategies for resource utilisation are important features of pathogens, yet have been overshadowed by stronger interest in genetic mechanisms underlying disease emergence. The purpose of this study is to ask whether host range and transmission traits translate into ecological strategies for host-species utilisation in a heterogeneous ecosystem, and whether host utilisation corresponds to genetic differentiation among three bromoviruses. We combine high-throughput sequencing and population genomics with analyses of species co-occurrence to unravel the ecological strategies of the viruses across four habitat types. The results show that the bromoviruses that were more closely related genetically did not share similar ecological strategies, but that the more distantly related pair did. Shared strategies included a broad host range and more frequent co-occurrences, which both were habitat-dependent. Each habitat thus presents as a barrier to gene flow, and each virus has an ecological strategy to navigate limitations to colonising non-natal habitats. Variation in ecological strategies could therefore hold the key to unlocking events that lead to emergence. Read More